skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Yoder, Anne"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Yoder, Anne (Ed.)
    Abstract Over the past 15 years, the D-statistic, a four-taxon test for organismal admixture (hybridization, or introgression) which incorporates single nucleotide polymorphism data with allelic patterns ABBA and BABA, has seen considerable use. This statistic seeks to discern significant deviation from either a given species tree assumption, or from the balanced incomplete lineage sorting that could otherwise defy this species tree. However, while the D-statistic can successfully discriminate admixture from incomplete lineage sorting, it is not a simple matter to determine the directionality of admixture using only four-leaf tree models. As such, methods have been developed that use 5 leaves to evaluate admixture. Among these, the DFOIL method, which tests allelic patterns on the “symmetric” tree S = (((1,2),(3,4)),5), succeeds in finding admixture direction for many five-taxon examples. However, DFOIL does not make full use of all symmetry, nor can DFOIL function properly when ancient samples are included because of the reliance on singleton patterns (such as BAAAA and ABAAA). Here, we take inspiration from DFOIL to develop a new and completely general family of five-leaf admixture tests, dubbed Δ-statistics, that can either incorporate or exclude the singleton allelic patterns depending on individual taxon and age sampling choices. We describe two new shapes that are also fully testable, namely the “asymmetric” tree A = ((((1,2),3),4),5) and the “quasisymmetric” tree Q = (((1,2),3),(4,5)), which can considerably supplement the “symmetric“ S = (((1,2),(3,4)),5) model used by DFOIL. We demonstrate the consistency of Δ-statistics under various simulated scenarios, and provide empirical examples using data from black, brown and polar bears, the latter also including two ancient polar bear samples from previous studies. Recently DFOIL and one of these ancient samples was used to argue for a dominant polar bear → brown bear introgression direction. However, we find, using both this ancient polar bear and our own, that by far the strongest signal using both DFOIL and Δ-statistics on tree S is actually bidirectional gene flow of indistinguishable direction. Further experiments on trees A and Q instead highlight what were likely two phases of admixture: one with stronger brown bear → polar bear introgression in ancient times, and a more recent phase with predominant polar bear → brown bear directionality. Code and documentation available at https://github.com/KalleLeppala/Delta-statistics. 
    more » « less
  2. Yoder, Anne (Ed.)
    Abstract Understanding the joint roles of protein sequence variation and differential expression during adaptive evolution is a fundamental, yet largely unrealized goal of evolutionary biology. Here, we use phylogenetic path analysis to analyze a comprehensive venom-gland transcriptome dataset spanning three genera of pitvipers to identify the functional genetic basis of a key adaptation (venom complexity) linked to diet breadth (DB). The analysis of gene-family-specific patterns reveals that, for genes encoding two of the most important venom proteins (snake venom metalloproteases and snake venom serine proteases), there are direct, positive relationships between sequence diversity (SD), expression diversity (ED), and increased DB. Further analysis of gene-family diversification for these proteins showed no constraint on how individual lineages achieved toxin gene SD in terms of the patterns of paralog diversification. In contrast, another major venom protein family (PLA2s) showed no relationship between venom molecular diversity and DB. Additional analyses suggest that other molecular mechanisms—such as higher absolute levels of expression—are responsible for diet adaptation involving these venom proteins. Broadly, our findings argue that functional diversity generated through sequence and expression variations jointly determine adaptation in the key components of pitviper venoms, which mediate complex molecular interactions between the snakes and their prey. 
    more » « less
  3. Yoder, Anne (Ed.)
    Abstract Phylogenetic reconstruction and species delimitation are often challenging in the case of recent evolutionary radiations, especially when postspeciation gene flow is present. Leopardus is a Neotropical cat genus that has a long history of recalcitrant taxonomic problems, along with both ancient and current episodes of interspecies admixture. Here, we employ genome-wide SNP data from all presently recognized Leopardus species, including several individuals from the tigrina complex (representing Leopardus guttulus and two distinct populations of Leopardus tigrinus), to investigate the evolutionary history of this genus. Our results reveal that the tigrina complex is paraphyletic, containing at least three distinct species. While one can be assigned to L. guttulus, the other two remain uncertain regarding their taxonomic assignment. Our findings indicate that the “tigrina” morphology may be plesiomorphic within this group, which has led to a longstanding taxonomic trend of lumping these poorly known felids into a single species. 
    more » « less
  4. Schwitzer, Christoph; Clark, Fay; Fichtel, Claudia; Ganzhorn, Jörg U; King, Tony; Mass, Vanessa; Rasoloarison, Rodin M; Ratsimbazafy, Jonah H; Volampeno, Sylviane N; Yoder, Anne D (Ed.)
    Black-and-white ruffed lemurs (Varecia variegata) are often described as highly sensitive to habitat disturbance (White et al., 1995; Balko, 1998; Ratsimbazafy, 2002; Ratsimbazafy, 2006; Herrera et al., 2011). In fact, local habitat quality has been shown to be a major predictor of Varecia occupancy across the species’ range (Morelli et al., 2020). In Ranomafana National Park, Varecia occupy several structurally and compositionally distinct sites. Disturbed sites—those previously subject to logging—have lower densities of shorter trees with smaller canopies and lower cover, as well as lower floristic diversity than undisturbed sites (Balko, 1998; Mancini, 2023). Resultantly, sites of lower quality habitat, particularly those with fewer large fruiting trees available, have lower population numbers of Varecia, with highly disturbed sites completely absent of this taxon (e.g., Herrera et al., 2011). However, our recent observations of Varecia in a disturbed forest site in Ranomafana National Park suggests the latter is not always the case. 
    more » « less
    Free, publicly-accessible full text available December 11, 2025